

REVISION # C
SUPERSEDE B
RELEASE DATE 2010-01-26

705304-101

WORK INSTR

DOC#

DOC TYPE

EMC LABORATORY 213 Harry Walker Parkway South NEWMARKET, ON, L3Y 8T3 Tel: 905-952-1242

HAEFELY ESD TARGET VERIFICATION

EGD TADGET	VEDIEICATION	DED ISO 1	10615-2001 &	10615-2008

1. PURPOSE

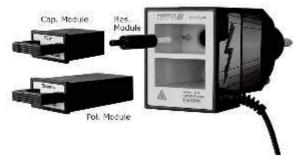
1.1. To provide specific test method setup configuration instructions in full compliance with OEM specifications and international standards.

2. SCOPE

2.1. To establish consistency and repeatability in test method results using the equipment and technical resources available in EMC laboratory inventory.

3. RESPONSABILITY

3.1. EMC laboratory authorized personnel.


4. EQUIPMENT AND MATERIALS

- 4.1. All test equipment that requires calibration shall be within its calibration period and shall be traceable to A2LA certified labs.
- 4.2. EMC lab personnel must ensure that certificates of calibration are obtained when equipment is sent out for calibration or repair.

Capacitor, Resistor & Polarity Modules

| DOC # 705304-101 |
| REVISION # C |
| SUPERSEDE | B |
| RELEASE DATE | 2010-01-26 |

WORK INSTR

DOC TYPE

EMC LABORATORY 213 Harry Walker Parkway South NEWMARKET, ON, L3Y 8T3 Tel: 905-952-1242

Tbl.4-1

HAEFELY ESD TARGET VERIFICATION

IDX	TITLE	DESCRIPTION	MODEL / MAKER	INVENTORY#
1.	ESD SYSTEM PESD 3010 (1 to 30 KV)	ESD generator serial# 249963 Capacitor Module 330 pF Capacitor Module 150 pF Resistor Module 330 OHM Resistor Module 2000 OHM	H507174 / Haefely	INV2267
2.	Coaxial target - as specified in IEC 61000-4-2 2 Ohm Shunt (target verification)	serial# 153476	Haefely	
3.	Electrometer with minimum input resistance of 100 GOHM used to verify the ESD simulator charging voltage. voltage	serial# 18103	Sensitive Research	INV1744
4.	Reference plane at least 1,2 m × 1,2 m & coaxial current target		Haefely	
5.	Wideband attenuator - 50 OHM, 20 dB attached to the output of the coaxial target during the ESD simulator verification ISO-10605:2001 ANNEX-A		Haefely	
6.	Double shielded coaxial cable less than 2 meter long.			
7.	Ground strap			
8.	Oscilloscope TDS-784A	serial# B010315	Tektronix	INV2282

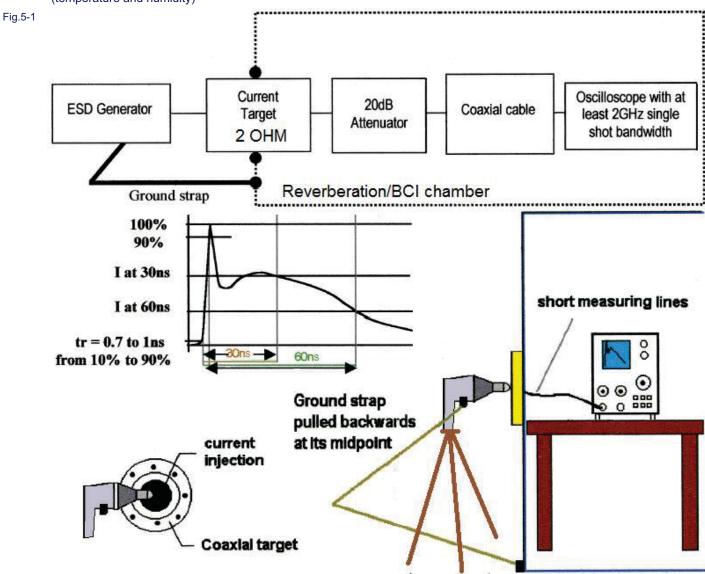
FLEX Automotive

FLEXTRONICS LABORATORY MANAGEMENT SYSTEM

DOC# 705304-101 **REVISION#** В

DOC TYPE

SUPERSEDE 2010-01-26 **RELEASE DATE**


WORK INSTR

EMC LABORATORY 213 Harry Walker Parkway South **NEWMARKET, ON, L3Y 8T3** Tel: 905-952-1242

HAEFELY ESD TARGET VERIFICATION

SUMMARY OF METHOD 5.

- 5.1. The ESD generator (gun) is placed on a tripod or equivalent non metal low loss support and it is powered in the same way as it will be used during test.
- 5.2. Prior to verifying the discharge current, determine the amplitude of the ESD generator using the ESD voltmeter. The accuracy of the test voltage measurement is as specified in Table A.1. ISO 10605:2008. Record environmental conditions (temperature and humidity)

DOC#	705304-101
REVISION #	C
SUPERSEDE	В
RELEASE DATE	2010-01-26
DOC TYPE	WORK INSTR

EMC LABORATORY 213 Harry Walker Parkway South NEWMARKET, ON, L3Y 8T3 Tel: 905-952-1242

HAEFELY ESD TARGET VERIFICATION

6. SAFETY PRECAUTIONS

- 6.1. The operating temperature per ISO 10605:2008 is relaxed from 23±5°C to 25±10°C.
- 6.2. Allowing testing to 15°C could lead to possible electrical shock accidents (dew could form on the test equipment, the device under test or other objects and form and unexpected discharge path).

7. TEST PLAN

- 7.1. Test method scheduled per LMS011 (EMC LAB, PROFICIENCY TESTING PROGRAM PROCEDURE)
- 7.2. ESD target verification must be logged in EMC database section Equipment compliance to spec.

Fig.7-1

Test Method (AEMCLAP)	Period	Competence through	Submit to AZLA	Next Scheduled Date	
Electrostatic Discharge (ESD) AEMCLRP Rev. 4, Appendix D 190 16605 (2001); GMW3097 (2006) Section 3.6; DC-1 1224 (Change A) Sections 10. 1 and 10.2: ES-XW7T-IA278-AC (CI280)	2 years	AEMCLRP Program. Quarterly waveform verifications may also be submitted. ESD gun voltage verification is done daily prior to each injection voltage level.	ESD gun voltage verification voltage waveform monitored by a calibrated Electrometer, equipment calibration records, and employee training records.	Sep 2008⊠ Sep 2010□	
Conducted Emissions (CISPR 25) AEMCLRP Rev. 4, Appendix F CISPR 25 (2002) Sections 5.2 and 6.3: DC-1 1224 (Change A) 39-56xrs 5.2 and 6.3; [MIW3097 (2006) Section 3.3.2; EB-XWTT-14276-AC (CE420)	6 months	Internal performance data through system verification using Flextronics Automotive Inc.'s Comb Generator ComPower CG- 515.	Data, equipment calibration records, and employee training records.	Dec 2006 Solution 2007 Solution 2007 Solution 2008 Solution 2009 Solution 2010 Solutio	
Bulk Current Injection (BCI) AEMCLRP Riev. 4, Appendix I ISO 114524 (2005). GMIW3097 (2006) Section 3.4.1: EB-XWTT-IA278-AC (IB 112); DCI-1224 (Change A) Section 7.2	2 years	AEMCLRP Program artifact testing.	Data, equipment calibration records, and employee training records.	Sep 2008⊠ Sep 2010□	
Radiated Emissions AEMCLRP Rev. 4 Appendix G CISPR 25 (2002) Section 6.4; DC-1 1224 (Change A) Section 6.4; GMW3097 (2005) Section 3.3.32; E5-XW7T-IA278-AC (RE 31.0)	2 years	AEMCLRP Program artifact testing. System verification data (taken with a Reference Radiator) and chamber quiet sweeps may also be submitted when periodic checks are made in the time period between the 2 year intervals.	Data, equipment calibration records, and employee training records.	Sep 2008⊠ Sep 2010□	
Transverse Electromagnetic Cell (TEM) 1 MHz is 200 MHz, up to 150 V/m AEMCLRP Rev. 4 Appendix J (DC) 150 1482-3 DC-14224 Removed from A2LA accreditation	2 years	internal performance data	Data, equipment calibration records, and employee training records.	Sep-2008	
Absorber-Lined Shielded Enclosure (ALSE) AEMCLRP Rev. 4, Appendix K 1901/1452-2(2004); Ford, GM, Chrysler DC-11224 (Change A), Sections 7.3 and 7.4	2 years	Internal performance data	Data, equipment calibration records, and employee training records.	Sep 2008⊠ Sep 2010□	

EMC LABORATORY 213 Harry Walker Parkway South NEWMARKET, ON, L3Y 8T3 Tel: 905-952-1242

HAEFELY ESD TARGET VERIFICATION

8. ESD VOLTAGE VERIFICATION

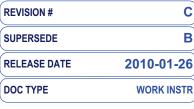
- 8.1. Calibrate the display voltage of the simulator by adjusting the ESD simulator voltage to the desired level and polarity.
- 8.2. Using the electrometer specified in 4.8, verify the voltage setting of the simulator at voltage levels of ± 2 kV, ± 4 kV, ± 6 kV, ± 8 kV, ± 15 kV and ± 25 kV.
- 8.3. The readings shall be within ± 500 V for voltages less than ± 5 kV and ± 10 % for voltages greater than ± 5 kV.

Fig.8-1

Tbl.8-1

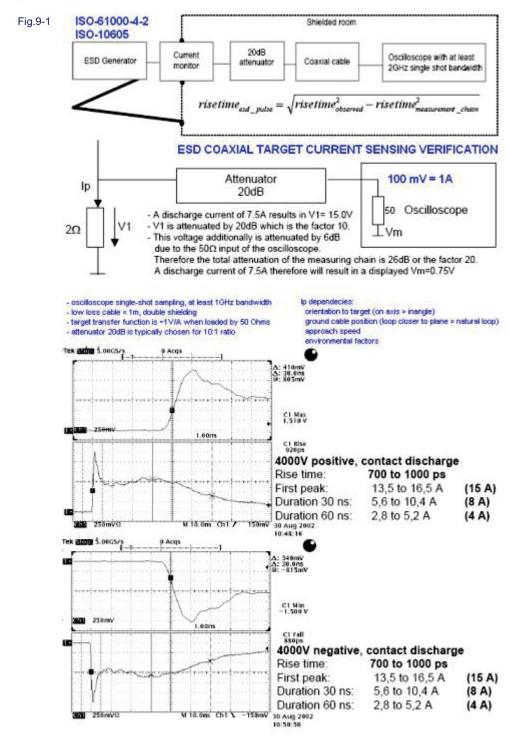
IDX	DISCHARGE NETWORK (example report table)	TEST VOLTAGE & TOLERANCE Temperature: 22 C, Humidity: 32%	POLARITY	READING
1.	150 pF & 2000 OHM (ISO-10605:2001)	e.g. 15 KV (+/- 10%)	+	14.8 KV
2.	150 pF & 2000 OHM (ISO-10605:2001)	e.g. 15 KV (+/- 10%)	-	14.8 KV
3.	330 pF & 2000 OHM (ISO-10605:2001)	e.g. 25 KV (+/- 10%)	+	26.5 KV
4.	330 pF & 2000 OHM (ISO-10605:2001)	e.g. 25 KV (+/- 10%)	-	26.5 KV
5.	150 pF & 330 OHM (Chrysler)			

330 pF & 330 OHM (Chrysler)


FLEX Automotive

FLEXTRONICS LABORATORY MANAGEMENT SYSTEM

DOC# 705304-101 C **REVISION#** В **SUPERSEDE**


EMC LABORATORY 213 Harry Walker Parkway South **NEWMARKET, ON, L3Y 8T3** Tel: 905-952-1242

HAEFELY ESD TARGET VERIFICATION

9. **ESD COAXIAL TARGET CURRENT SENSING VERIFICATION**

EMC LABORATORY 213 Harry Walker Parkway South NEWMARKET, ON, L3Y 8T3 Tel: 905-952-1242

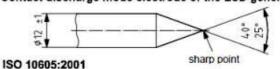
HAEFELY ESD TARGET VERIFICATION

10. SIMULATOR'S RESISTIVE-CAPACITIVE (RC) TIME CONSTANT VERIFICATION

- 10.1. Set the horizontal time base and vertical amplifier level of the measurement instrument to enable the complete ESD waveform to be viewed. Set the horizontal sweep to single-event trigger.
- 10.2. Verify the RC time constant of the ESD simulator, for both probes if both are used, at 15 kV (air discharge) only, at both positive and negative polarities.
- 10.3. Move the simulator to the target very slowly, i.e. at \sim 5 mm/s.
- 10.4. Review the waveform and analyze its key parameters per ISO-10605:2001:
 - a) RC time constant is (600 ± 130) ns for the 330 pF probe
 - b) RC time constant is (300 ± 60) ns for the 150 pF probe
- 10.5. Verify that the RC time constant is (600 ± 130) ns for the 330 pF probe. Verify that the RC time constant is (300 ± 60) ns for the 150 pF probe

11. TEST SETUP

- 11.1. The vertical calibration plane with the coaxial current target is mounted in such a way that there is at least 0,6 m from the target to any edge of the plane.
- 11.2. The current target is mounted at the centre of the vertical calibration plane (reverberation chamber wall); .
- 11.3. The connection for the ESD generator return current cable (ground strap) is made at the bottom centre of the plane 0,5 m below the target (IEC 61000-4-2:2008).
- 11.4. The ground strap is pulled backwards at the middle of the cable, forming an isosceles triangle. It is not allowed to let the ground strap lay on the floor during calibration.

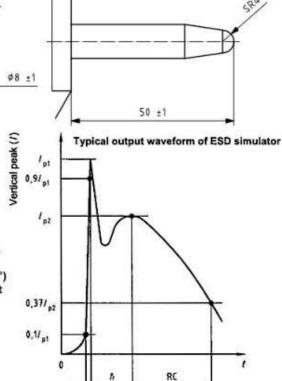

EMC LABORATORY 213 Harry Walker Parkway South NEWMARKET, ON, L3Y 8T3 Tel: 905-952-1242

HAEFELY ESD TARGET VERIFICATION

12. TEST PROCEDURE

- 12.1. Connect the target output to the oscilloscope using a 50 OHM shielded cable with high shielding integrity (e.g. double shielded) of less than 2 m in length.
- 12.2. Ensure the 50 OHM shielded cable is not looped and it is insulated from the ground plane.
- 12.3. The Faraday shielded enclosure used to separate the target from the oscilloscope is in our case the Reverberation Chamber.
- 12.4. Set the horizontal time base and vertical amplifier level of the oscilloscope to enable the rise-time of the ESD waveform to be viewed.
- 12.5. Set the horizontal sweep to single event trigger.
- 12.6. Connect the ESD simulator high-voltage ground directly to the Reverberation Chamber wall.
- 12.7. Set up the ESD simulator and turn it on in accordance with its instruction manual.
- 12.8. Perform test per ISO10605:2008 Table A.1 Contact discharge verification procedure
- 12.9. Save each valid ESD waveform acquired via oscilloscope on floppy disk.

Fig.12-1 Contact discharge mode electrode of the ESD generator



ISO 10605:2001

Direct contact discharge verification parameters

Level	Indicated voltage	First peak current	Risetime with discharge switch	
	kV	Α	ns	
1	2 ± 0,5	7,5 +2,25	The state of the s	
2	4 ± 0,5	15 *4,5	0,7 to 1	
3	6 ± 0,6	22,5 +6,75		
4	8,0±8	30 *9		

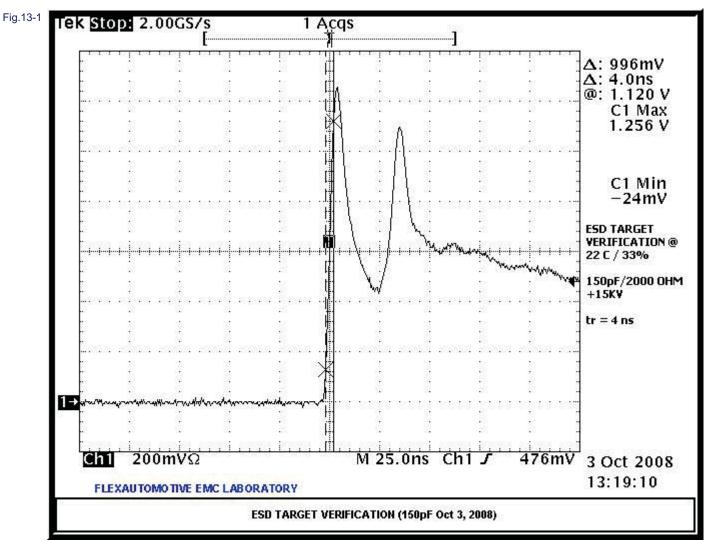
Air discharge mode electrode of the ESD generator body of simulator

Air discharge

- 1) Place the ESD simulator a minimum of 15 mm from the coaxial target.
- 2) Hold the simulator with fingertip probe attached perpendicular (\pm 15°) to the target and move it very slowly, i.e. at ~ 5 mm/s towards the target until a single discharge is obtained.
- 3) Report only single event discharge waveforms.
- 4) The test voltages for air discharge risetimes are at ± 15 kV only.
- 5) Verify that the risetime is less than 5 ns.

Ø12 ±1

DOC#	705304-101		
REVISION #	С		
SUPERSEDE	В		
DELEASE DATE	0040 04 00		


EMC LABORATORY 213 Harry Walker Parkway South NEWMARKET, ON, L3Y 8T3 Tel: 905-952-1242

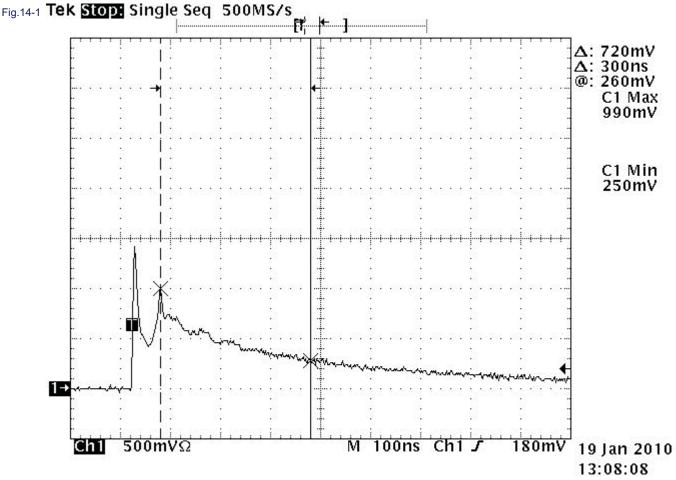
HAEFELY ESD TARGET VERIFICATION

REVISION #	C
SUPERSEDE	В
RELEASE DATE	2010-01-26
DOC TYPE	WORK INSTR

13. **TEST REPORT - RISE TIME**

- 13.1. Per ISO10605:2008 Table A.1 — Contact discharge verification procedure.
- 13.2. Report the discharge network used, ESD voltage, temperature (23 ± 5) o C and humidity (between 30 % and 60 %).

DOC#	705304-101
REVISION #	C
SUPERSEDE	В
DELEASE DATE	2010 01 26


EMC LABORATORY 213 Harry Walker Parkway South **NEWMARKET, ON, L3Y 8T3** Tel: 905-952-1242

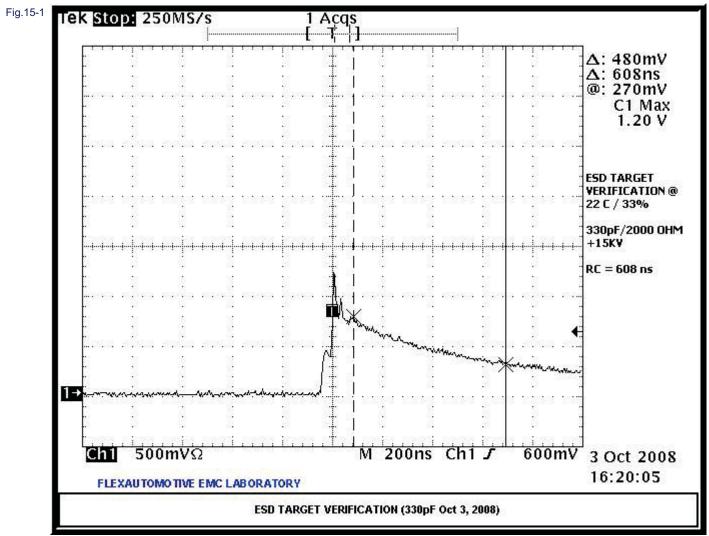
HAEFELY ESD TARGET VERIFICATION

SUPERSEDE	I
RELEASE DATE	2010-01-20
DOC TYPE	WORK INST

14. **TEST REPORT - RC TIME CONSTANT PER ISO-10605:2001**

- 14.1. See chapter 12 (Test procedure) for clarification on how to measure the RC time constant per ISO-10605:2001.
- 14.2. For each discharge network, test voltage, and polarity report the calculated RC time constant for both AEMCLRP and ISO-10605 methods. Use the same ESD target verification aguired plot whenever is possible.

DOC# 705304-101


EMC LABORATORY 213 Harry Walker Parkway South **NEWMARKET, ON, L3Y 8T3** Tel: 905-952-1242

HAEFELY ESD TARGET VERIFICATION

С
В
2010-01-26
WORK INSTR

15. **TEST REPORT - RC TIME CONSTANT PER AEMCLRP**

- 15.1. IMPORTANT: Per AEMCLRP "In determining the RC time constant, the RC time constant shall be calculated in the exponentially decaying portion of the waveform after the leading edge and/or ringing".
- For each discharge network, test voltage, and polarity report the calculated RC time constant for both AEMCLRP and 15.2. ISO-10605 methods. Use the same ESD target verification aguired plot whenever is possible.

| DOC # 705304-101 |
| REVISION # C |
| SUPERSEDE B |
| RELEASE DATE 2010-01-26 |

WORK INSTR

DOC TYPE

EMC LABORATORY 213 Harry Walker Parkway South NEWMARKET, ON, L3Y 8T3 Tel: 905-952-1242

HAEFELY ESD TARGET VERIFICATION

)		
16.	DEFINITIONS						
16	16.1. I _p = peak value of the discharge current [A] (IEC-6100-4-2:2008)						
16	16.2. I_{30} = value of the current 30 ns after the peak current has reached 0,1 times I_p [A] (IEC-6100-4-2:2008); I_1 per ISO10605:2008						
16	$I_{60} = \text{value of the state}$	he current 60	ns after the peak curr	rent has reached 0,1 times I_p [A] (IEC	C-6100-4-2:2008); I ₂ per ISO1060	5:2008	
16	t_r = rise time or	f the current	[ns] (from 0,1 I _{p1} to 0,9) (_{p1})			
16	.5. RC time const	ant = simulat	or's resistive-capacitiv	re (RC) time constant (ISO10605:200	01) (from I_{p2} to 0,37 I_{p2})		
16	6.6. Vs = Simulator	rvoltage					
16	.7. I _{p1} = First verti	cal peak					
16	I_{p2} = Second v	ertical peak					
				REFERENCE	S		
	ISO 10605:2001	ED 1.2					
	ISO 10605:2008	ED 2.0					
	IEC 61000-4-2:2001	1-st Ed					
	IEC 61000-4-2:2009	2-nd Ed					
				REVISION CHAN	GES		
	Jan 15, 2010	А	RELEASE				
	Jan 26, 2010	В	RC Time Constan	t measurement clarification per A	AEMCLRP		
				END-USER FEED	BACK		
0 1	very satisfied	0	satisfied	neutral	O dissatisfie	d ver	y dissatisfied
	Please ra	te your o		ion with this LMS docum		gestions or comn	nents.
				Your opinion is very imp	OFTANT FOR US.		
Sur	vey Date						
- 41							

DOC# 705304-101 REVISION #

EMC LABORATORY 213 Harry Walker Parkway South NEWMARKET, ON, L3Y 8T3 Tel: 905-952-1242

HΑ

SURATURT WANAGEWENT STSTEW	INEVISION #	
	SUPERSEDE	В
AEFELY ESD TARGET VERIFICATION	RELEASE DATE	2010-01-26
	DOC TYPE	WORK INSTR