EMC FLEX BLOG A site dedicated to Automotive EMC Testing for Electronic Modules

Artificial Network (LISN) Performance Verification

1. September 2022 07:48 by Christian in
AN (Artificial Network) or LISN (Line Impedance Stabilization Networks) must be periodically ve

AN (Artificial Network) or LISN (Line Impedance Stabilization Networks) must be periodically verified for integrity and performance.

CISPR 25 CONDUCTED EMISSIONS VOLTAGE METHOD SYSTEM CHARACTERIZATION

  • Input a 100 MHz 50 dBμV signal to the DUT side of a LISN with the Power Supply Side terminated with a 50 OHM load;
  • Measure via the voltage output of the LISN using the standard software that is used when testing that incorporates cable loss.
  • The measurement must be within +/- 1.5 dBμV of the 50 dBμV input signal at 100 MHz.

  • Use a Comb Generator (i.e., CG-515) with AN as noise source (1MHz Step).
  • Terminate the Comb Generator with 40 dB attenuator.
  • Measure from 0.15 to 200 MHz.

(1) Turn off Comb Generator for Ambient measurement.

(2) Turn on Comb Generator for data collection.

Christian Rosu

REF: AEMCLRP:2006

 

CISPR 25 Conducted Emissions Measurements.

  CISPR-25 indicates that both CE-V and CE-I must be carried out to validate an automotive electronic product.

 

CISPR-25 indicates that both CE-V and CE-I must be carried out to validate an automotive electronic device.

CE-V in dBuV is measured on B+ and GND lines using the LISN port.

CE-I in dBuA is measured using a “current probe” clamped at 5 cm, then at 75 cm from DUT’s connector. The probe is clamped on the whole harness, then on each connector separately. The RF noise measured may be coupled from DUT directly as well as from wire-to-wire along the 1.7 m test harness.

CISPR 25 is not very specific about supply lines CE “redundancy”, therefore we test everything for CE-I.

Chrysler is the only OEM that specifies in CS.00054 as exception from CISPR 25 to remove from “current probe” all Supply Lines (power and ground).

CS.00054 is asking to run CE-I on all wires not tested at CE-V, however measurements are aquired only at 5 cm from DUT's connector.

 

2022-06-29

Christian Rosu

Automotive Battery Ground Offset

28. June 2022 11:36 by Christian in Electric Vehicle, Grounding, Test Methods
 The EV does not mean the end of 12V automotive battery. For various safety reasons, complex mo

 The EV does not mean the end of 12V automotive battery. For various safety reasons, complex modules are powered using two 13.5V / 200A batteries such that the Backup battery comes into play the moment the Main battery's voltage is outside operating voltage range.

The Ground Offset Test involves a voltage variation of +/- 1V on Supply Return line that may affect DUT circuitry referenced to an absolute 0V via remote ground. The diagram below shows how to use a combination of three power supplies to simulate the +/- 1V Ground Offset condition.

 

 

2022-06-29

Christian Rosu

CISPR 25 Ground Plane Size

  Differential-mode RF emissions in a CISPR 25 component level configuration occur due to

 

Differential-mode RF emissions in a CISPR 25 component level configuration occur due to the flow of current (IDM) via signal paths in which the forward and return conductors are not routed together, thereby forming a conductor loop. The resulting magnetic field from the conductor loop is proportional to the current IDM, the area of the loop and the square of the frequency of the RFI current.

Common-mode RF emissions occur due to undesired parasitic effects, e.g. due to inductances in the current return path or unsymmetries during signal transmission. If we connect a cable to a DUT of it may function like an antenna allowing a common-mode current ICM to flow. Both signal and power supply lines can function as efficient antennas. Here, our rule of thumb is that line lengths that do not exceed λ/10 are uncritical, whereas longer lines (e.g. λ/6) must be treated as potential sources of RF emissions.

The magnitude of the voltage drop on the ground plane and thus the magnitude of the common-mode current coupled into the connected line are determined by the parasitic inductance and the slope steepness of the signal.

 

 

 

 

We cannot assume that differential mode radiated emissions are not dominant nor an infinite ground plane. A ground plane with finite width has inductance.

Common-mode RF emissions can also occur due to differential mode signal transmission.
If the parasitic terminating impedances of a differential mode transmission path differ substantially, in addition to the desired differential-mode current IDM a common-mode current ICM will also flow via the ground plane that connects the transmitter and receiver modules. This unwanted ground current ICM can then also be coupled into lines connected to DUT and cause emissions in the far field.

The strength of the common mode current and the level of radiated emissions depend on the inductance of the ground plane. The value of this inductance depends on the structure of the transmission line.

The ground plane inductance in a symmetric structure is:
L21 = (µ0/) * ln((/W)+1)
Where:
W is the width of the ground plane
t is the height of the harness

The ratio of the height of the harness and the width of the ground plane determines the GP inductance.

 

 

As the harness is closer to the edge of the ground plane, the measurement tolerances are higher since the ground plane inductance increases. The tolerances in RE measurments are acceptable when the distance of the harness to the ground plane edge is 10 cm.
Since common mode radiated emissions occur through the ground plane (or the whole setup), the length of the ground plane can impact the tolerances in RE measurments. Longer the ground plane, higher the radiated emissions level.

 

Christian Rosu, 2022-03-07

 

 

RF Boundary in automotive EMC for electronic components

RF Boundary is the element of an EMC test setup that determines what part of the harness and/or&nbsp

RF Boundary is the element of an EMC test setup that determines what part of the harness and/or peripherals is included in the RF environment and what is excluded. It may consist of, for example, ANs, BANs, filter feed-through pins, RF absorber coated wire and/or RF shielding.

 

RF Boundary is also an RF-test-system implementation within which circulating RF currents are confined

 

  • to the intended path between the DUT port(s) under test and the RF-generator output port, in the case of immunity measurements (ISO 11452-2, ISO 11452-4, ISO 1145-9), and
  • to the intended path between the DUT port(s) under test and the measuring apparatus input port, in the case of emissions measurement (CISPR 25),

 

and outside of which stray RF fields are minimized.

 

The boundary is maintained by insertion of BANs, shielded enclosures, and/or decoupling or filter circuits. The ideal RF boundary replicates the circuitry of the device connected to DUT in vehicle.

The standard test harness lenght for automotive EMC electronic components is (1700mm -0mm / +300mm). This 1.7m test harness runs between the DUT and the Load Simulator (Shielded Enclosure) that plays the role of RF Boundary.

 

If the Load Simulator enclosure does not include all DUT loads and activation/monitoring support equipment, additional support devices may be placed directly on the ground plane. The connection of additional devices to LS enclosure must be done via short wiring running on the ground plane.

 

Testing at subsystem level is preferable to any simulation. Whenever possible, use production intent representative loads.

 

Running long coax cables directly from DUT outside the chamber via SMA bulk filter panel would violate the 1.7m test harness length rule invalidating the test result. Ideally is to use Fiber Optic to exchange data with devices placed outside the test chamber.

 

Running long coax cables between Load Simulator and a support device placed outside the chamber is acceptable as long as the I/O line in question is not just an extension from DUT without proper RF boundary at the end of maximum 2-meter length of standard test harness.

 

It is critical to use the test harness length as defined by CISPR-25, ISO 11452-2, ISO 11452-4, and ISO 11452-9 to achieve valid compliance for your product. The length of the test harness as well as the grounding method (remote vs local) can result in different RF emissions level. Longer the test harness, higher RF emissions above 100 MHz due to its resonance pattern. The local grounding would show less magnitude variation across resonance peaks above 100MHz.

 

Christian Rosu

2022-02-20